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B U C K L I N G  O F  A D U C T I L E  C O L U M N  U N D E R  R I G I D  L O A D I N G  

M. N. Kirsanov UDC 539.376 

The problem of buckling of rheological structures has been treated in numerous studies, a review of which can be found 

in [1, 2]. In the majority of cases, the effect is discussed at constant loads. The present paper studies the possibility of buckling 

of a column during an increase in compressive force at a specified constant rate of deformation. Use is made of the singular 
point theory [3], which refines the pseudo-bifurcation approach [4] in problems of buckling of ideal systems during creep. 

To defining relationship is taken in the form [5] 

pp= = a o  ~, (I) 

where p = e - a/E is the creep strain; A, n, and ~ are the parameters of the medium�9 We shall consider a material in which 

the elastic strain cr/E may be neglected, i.e., E --> oo, p = e. 

The equilibrium of a column of length I acted upon by a load T near the rectilinear position obeys equations that follow 

from the hypothesis of plane sections and the equation of moments about a neutral axis: 

f Ap~d~ = 1u", f A ~ a ~  = --  r~,. (2) 

Here f~, J are the area and moment of inertia of the cross section; the symbol A denotes the increment of the corresponding 
quantity; v is the deflection of the column; v"  is the second derivative of the deflection with respect to the longitudinal 

coordinate y. 

Small increments of  stresses and strains satisfy the linearized equation 

�9 p"Ab + ctp"-~bAp = An~-lAa.  (3) 

We multiply Eq. (3) by z, integrate over the cross-sectional area fl, and allowing for (1), (2) and making the substitution T = 

aft, obtain 

p i P '  + ~ b J " '  = - , , pbo~ , .  (4) 

Equation (4) is satisfied by the functions 

o = Uosinity, b = Ulsirgty, It = ~ / L  (5) 

Substitution of (5) into (4) yields 

k ( n p / D  - a ) v  o - pU 1 = O, 

where D = J~2/fL The deformation program is specified as linear: 

(6) 

p = kt (7) 
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(k = const being the rate of deformation). Equation (6) is rewritten in the form 

( ~  - a ) U  o - tt.:~ = O. (8) 

We introduce the dimensionless time 

r = k t n / D .  (9) 

Equation (8) isolates the value r = r 1 = a (the Rabotonov-Shesterikov criterion [6]) as a singular point of the 

process. Actually, a disturbance specifying the value of the initial deflection U 0 up to the instant r 1 gives a deflection that 

decreases immediately after the instant of disturbance and increases if r > r 1 = c~, as can be judged from the sign of the 

deflection rate U 1. 

To analyze the acceleration of the column's deflection and its higher time derivatives at the instant of disturbance we 

shall raise the order of the defining relation. For brevity, we shall continue ourselves to the third-order derivative. This is 

sufficient to explain the relationships which thus arise. We differentiate Eq. (1) twice with respect to time: 

"~pa + c tpa- l~2  = Ano,  n - l~ ,  (10) 

p o ) f  + 3 a b ~ ; p ' - '  + a ( a  - 1 ) k 3 f  -2 = a n ( o ' - ' a  + ( n  - l ) e ' - 2 b ~ ) .  (11) 

By analogy with the way in which the equation for amplitudes (8) was obtained from Eq. (1), we derive from (10) and (11) 

the equations for the quantities U i introduced by means of the formula v (i) = Uisin#y (i = 0, 1, 2 . . . .  ), where v (i) is a time 

derivative of order i. 

Variation of (1) and (11) yields 

t2Aj~ + 2atA~ + a(cx -- l )Ap = nk t2 l (n  --  l ) b A a / o  + A&l/cr; 

t~Ap (3) + 3 ~ ? A p  + 3 a ( a  -- 1)tA b + a(a~ --  I) ( ~  -- 2 ) A p  

-- nk~[(n - I) (n - 2 ) ~ A a / c r  z + ~ r A a / a  + 2(n -- 1 ) b A & / a  + a~rl.  

When p = kt, it follows from (1) that 

(12) 

(13) 

/~*zt" = A : .  (14) 

Differentiating this equation twice, we obtain 

m ~ ,  m . 

nt 

Allowing for the latter expressions, we derive from (12) and (13) 

a ( ~  - a + D U  O + (T - 2a)u~t  - u=t: = 0;  (15) 

a ( a  m 1) (~  --  a + 2 ) U  o + a ( 2 ~  --  3 a  + 3)Uzt 

+ (T - 3a)U2t a - U3t ~ = 0. (16) 

Equations (8), (15) form a system for variables U 0, U 1, U 2. Let the column, as a result of  some disturbance receive 

a given initial magnitude of acceleration of deflection amplitude U 2. The deflection U 0 and its rate U 1 are expressed in terms 

of U 2 by means of the solution of the system of equations (8), (15): 

Uo = :U:o/8=, u I = tU2B/B , 

(B  e = I ,  B z = "r --  a ,  B 2 = 1-2 - 2tx'r 4- a ( a  + 1)).  
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Similarly, if U 3 is given, the initial values of U o, U l, U 2 are expressed in terms of U 3 from the solution of the system (8), (15), 

(16). We write it in the matrix form 

[ ~ - - a  - - t  
a ( r - a + l )  ( r - ~ ) t  

la(a 1) ('r - a + 2) a(2"r - 3~ + 3)t 

m S l  

?(~ - 3~) u~ 
(17) 

From the solution of (17) we have 

Uo = ?uyo/B,, u, = :u_s,/B~, u, = tt.:y,/B,, 

where B 3 = 7"3 - 3c~z 2 + 3ee(~ + 1)r - oe(e~ + 1) (ce + 2) is the determinant of the matrix of the system. 

A singular point of  order N z N corresponds to the equality to zero of the determinant of the system of order N. As 

is evident from the solutions for N = 2 and N = 3, the initial values of the amplitudes U o, U t . . . . .  UN. 1 increase indefinitely. 

The polynomial B 2 has no roots, and hence, no second-order singular point exists in this problem. A third-order singular point 

can be found numerically from the solution of the equation B 3 = 0. Continuing the process of setting up the polynomials 

according to the scheme discussed, we derive the following: 

. B ~ = z ' -  4 a t  ~ +  6a (a  + 1)r 2 -  4a ( a  + l ) ( a  + 2)r + a ( a  + 1 ) ( a  + 2 ) ( a  + 3). 

It is easy to check the general formula 

N 

imO 

where Ci N are binomial coefficients; (o0 i = o~(o~ + 1) ... (c~ + j - 1) is Pochgammer's symbol; (COo = 1. In addition, the 

following differential relation may be used in obtaining the roots: 

o 
B N = NBN_ t. 

Numerical calculation shows that the even polynomials have no roots, and the roots of the odd polynomials increase 

steadily as c~ increases and are ordered in accordance with the orders of the polynomials (see Fig. 1). 

J ~  

r 

/ 

Fig. 1 
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To a singular point of order N corresponds a critical time t N given by Eq. (9): 

rN 
tN = "~n D. (18) 

The stress in the column during that time increases from zero to a value which we f'md from (14): 

The solution obtained can, for example, be used to estimate the buckling-safe rate of  load applications in a buckling 

experiment at a constant load a, .  In order for buckling to be avoided at the stage of load increase from zero to the working 

value a , ,  the time of increase of the effort should be smaller than the time Corresponding to the first singular point t I. Hence, 

according to (14) and (18), we have 

- -  

We shall compare the proposed approach to the results that follow from certain known conditional criteria of stability 

in creep. We note at once that these criteria were developed for the case of a constant load and a medium having a certain 

modulus of elasticity E. The transfer of the conditional criteria to the analysis of the loading p = kt of an instantaneously rigid 

material is somewhat formal. 

Tangent  Module Cr i te r ion  [7]. Eliminating the time t from Eq. (14) and from the loading law (7), we obtain the 

equation of an isochrone, kp '~ = Ao n. We shall differentiate it with respect to p. We find the tangent modulus E c = ~cr/(np). 

The critical time will be determined from the Euler formula with modulus E c instead of E: o = EcD. Hence 

l Shml ~ - - D .  nk 

Cri t ical  S t ra in  Cr i te r ion  [8]. For an elastic column, the strain corresponding to the Euler load a e is e = %/E = D. 

In our case, p = D, whence there immediately follows 

D 
t j  = "~. 

Here the critical time is independent of the properties of the medium. 

Dis turbance Relaxation Cri ter ion [9]. When the column is at equilibrium in a deflected state acted upon by some 

disturbing load (of moment m), the second equation (2) should be replaced by 

/- 
. !  A J z d s  = - T u -  m .  (19) 
Q 

As the critical time we take the time in which at a constant deflection v, the moment m sustaining this state will drop to zero. 

Considering that v = const, from (2), (3), (19) with lb = k we obtain the equation for the amplitude M of  the disturbing 

moment (m = Msin/~y): 

= Uor(X~l(~) - i). 

The moment decreases from an infinitely large value at t = 0 to zero in a time 

a 

/Iv ffi ~ D, 

which coincide in magnitude with tShnl and with the first-order singular point t 1. 
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